I M.Tech - I Semester - Regular / Supplementary Examinations February 2020

ADVANCED MECHANICS OF SOLIDS (MACHINE DESIGN)

Duration: 3 hours
Max. Marks: 60
Answer the following questions.

1. a) Compute the principal stresses, if the state of stress at a point is categorized by the components $\sigma_{\mathrm{x}}=10.9 \mathrm{~N} / \mathrm{mm}^{2}, \sigma_{\mathrm{y}}=8.2 \mathrm{~N} / \mathrm{mm}^{2}, \sigma_{\mathrm{z}}=4.34 \mathrm{~N} / \mathrm{mm}^{2}$ $\tau_{\mathrm{xy}}=4.10 \mathrm{~N} / \mathrm{mm}^{2}, \tau_{\mathrm{yz}}=5.36 \mathrm{~N} / \mathrm{mm}^{2}$ and $\tau_{\mathrm{zx}}=0.76 \mathrm{~N} / \mathrm{mm}^{2}$.
b) Derive the strain displacement relations. 8 M
(OR)
2. a) Describe the maximum shear stress and Strain energy
density Criterions.
7 M
b) Differentiate maximum principal stress criterion and distortion energy density criterion.
3. Locate the position of shear centre for thin channel section as shown in Figure below.

4. a) What is Unsymmetrical bending? How can it be avoided?
b) A simply supported beam of length 1.8 m carries a central load of 3.4 kN inclined at 30° to the vertical and passing through the centroid of the section as shown in Figure. Estimate the maximum tensile stress and maximum compressive stress.

5. A ring is made of stock with rectangular cross-section is subjected to a load of 10 kN as shown in Figure. The inside diameter of the ring is 120 mm . Compute the critical stress in the ring.

$40 \mathrm{~mm} \times 20 \mathrm{~mm}$
(OR)
6. Derive the equation for the circumferential stress acting on a rotating disk of uniform thickness with a hole in the middle.

15 M
7. a) How is torsion of a non-circular shaft different from that of circular shaft?

7 M
b) Discuss Prandtl's Membrane Analogy.
8. A cantilever beam with a rectangular cross section and is subjected to equal loads P at the free end and at the center as shown in Figure. Estimate the deflection of the free end of the beam using Castigliano's theorem.

